
This article describes the process of multicriteria optimization of a complex industrial control object using Pareto efficiency. The object is being decomposed and viewed as a hierarchy of embedded orgraphs. Performance indicators and controlling factors lists are created based on the orgraphs and technical specifications of an object, thus allowing to systematize sources of influence. Using statistical data archives to train, the neural network approximates key sensors data to identify the model of the controllable object and optimize it.
Article
Article
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
