Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 2012 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lipopolysaccharide of Coxiella burnetii

Authors: Craig T. Narasaki; Rudolf Toman;

Lipopolysaccharide of Coxiella burnetii

Abstract

A lipopolysaccharide (LPS) is considered to be one of the major determinants of virulence expression and infection of virulent Coxiella burnetii. The LPSs from virulent phase I (LPS I) and from avirulent phase II (LPS II) bacteria were investigated for their chemical composition, structure and biological properties. LPS II is of rough (R) type in contrast to LPS I, which is phenotypically smooth (S) and contains a noticeable amount of two sugars virenose (Vir) and dihydrohydroxystreptose (Strep), which have not been found in other LPSs and can be considered as unique biomarkers of the bacterium. Both sugars were suggested to be located mostly in terminal positions of the O-specific chain of LPS I (O-PS I) and to be involved in the immunobiology of Q fever. There is a need to establish a more detailed chemical structure of LPS I in connection with prospective, deeper studies on mechanisms of pathogenesis and immunity of Q fever, its early and reliable diagnosis, and effective prophylaxis against the disease. This will also help to better understanding of host-pathogen interactions and contribute to improved modulation of pathological reactions which in turn are prerequisite for research and development of vaccines of new type. A fundamental understanding of C. burnetii LPS biosynthesis is still lacking. The intracellular nature of the bacterium, lack of genetic tools and its status as a selected agent have made elucidating basic physiological mechanisms challenging. The GDP-β-D-Vir biosynthetic pathway proposed most recently is an important initial step in this endeavour. The current advanced technologies providing the genetic tools necessary to screen C. burnetii mutants and propagate isogenic mutants might speed the discovery process.

Keywords

Lipopolysaccharides, Virulence, Coxiella burnetii, Animals, Humans, Q Fever

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?