Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://arxiv.org/pdf/astro-ph/...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Astrophysics and Space Science
Article . 2004 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 2004 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2002
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Clouds: Formation and Disruption

Authors: Javier Ballesteros-Paredes;

Molecular Clouds: Formation and Disruption

Abstract

Molecular clouds (MC) are the densest and coldest component of the interstellar gas, and the sites of star formation. They are also turbulent and fractal and their masses and sizes span several orders of magnitude. It is also generally believed that they are close to Virial equilibrium (VE). Since this statement has been questioned by a number of authors, with important implications on molecular clouds' lifetimes, we will review this subject within the context of a turbulent ISM. In this framework, there is significant numerical evidence that MCs are not in VE, that there is a strong exchange of mass, momentum and energy between clouds and their surrounding medium, and that it is difficult (if not impossible) to form quasistatic cores inside MCs, suggesting that they must be transient, short-lived phenomena. Thus, their formation and disruption must be primarily dynamical, and probably not due to just a single mechanism, but rather to the combination of several processes. This picture seems consistent with recent estimates of ages of stars in the solar neighborhood.

13 pages, 1 jpg figure, 1 eps figure. For publication in a proceedings issue of Astrophysics & Space Science recording the conference "From Observations to Self-Consistent Modeling of the Interstellar Medium", held in Porto, Portugal

Keywords

Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Green