
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>This review is based on lectures given at the 45th Saas-Fee Advanced Course 'From Protoplanetary Disks to Planet Formation' held in March 2015 in Les Diablerets, Switzerland. Starting with an overview of the main characterictics of the Solar System and extrasolar planets, we describe the planet formation process in terms of the sequential accretion scenario. First the growth processes of dust particles to planetesimals and subsequently to terrestrial planets or planetary cores are presented. This is followed by the formation process of the giant planets either by core accretion or gravitational instability. Finally, the dynamical evolution of the orbital elements as driven by disk-planet interaction and the overall evolution of multi-object systems is presented.
Lecture Notes of the 45th Saas-Fee Advanced Course 'From Protoplanetary Disks to Planet Formation', March 2015, 111 Pages
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
