Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://eprint.iacr....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://eprint.iacr.org/2014/1...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2017
Data sources: Crossref
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Removing Erasures with Explainable Hash Proof Systems

Authors: Michel Abdalla; Fabrice Benhamouda; David Pointcheval;

Removing Erasures with Explainable Hash Proof Systems

Abstract

International audience; An important problem in secure multi-party computation is the design of protocols that can tolerate adversaries that are capable of corrupting parties dynamically and learning their internal states. In this paper, we make significant progress in this area in the context of password-authenticated key exchange (PAKE) and oblivious transfer (OT) protocols. More precisely, we first revisit the notion of projective hash proofs and introduce a new feature that allows us to explain any message sent by the simulator in case of corruption, hence the notion of Explainable Projective Hashing. Next, we demonstrate that this new tool generically leads to efficient PAKE and OT protocols that are secure against semi-adaptive adversaries without erasures in the Universal Composability (UC) framework. We then show how to make these protocols secure even against adaptive adversaries, using \emph{non-committing encryption}, in a much more efficient way than generic conversions from semi-adaptive to adaptive security. Finally, we provide concrete instantiations of explainable projective hash functions that lead to the most efficient PAKE and OT protocols known so far, with UC-security against adaptive adversaries, with or without erasures, in the single global CRS setting.As an important side contribution, we also propose a new commitment scheme based on DDH, which leads to the construction of the first one-round PAKE adaptively secure under plain DDH without pairing, assuming reliable erasures, and also improves previous constructions of OT and two- or three-round PAKE schemes.

Country
France
Subjects by Vocabulary

Microsoft Academic Graph classification: Theoretical computer science Oblivious transfer Computer science business.industry Computation Universal composability Hash function Context (language use) Encryption business Key exchange

Keywords

[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Funded by
EC| CRYPTOCLOUD
Project
CRYPTOCLOUD
Cryptography for the Cloud
  • Funder: European Commission (EC)
  • Project Code: 339563
  • Funding stream: FP7 | SP2 | ERC
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.