
Generic conversational agents often use hard-coded stimulus-response data to generate responses, for which little to no effort is attributed to effectively understand and comprehend the input. The limitation of these types of systems is obvious: the general and linguistic knowledge of the system is limited to what the developer of the system explicitly defined. Therefore, a system which analyses user input at a deeper level of abstraction which backs its knowledge with common sense information will essentially result in a system that is capable of providing more adequate responses which in turn result in a better overall user experience.
Artificial intelligence, Expert systems (Computer science), Machine learning, RDF (Document markup language)
Artificial intelligence, Expert systems (Computer science), Machine learning, RDF (Document markup language)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
