
Let P be a set of n points such that each of its elements has a unique weight in {1, …,n}. P is called a wp-set. A non-crossing polygonal line connecting some elements of P in increasing (or decreasing) order of their weights is called a monotonic path of P. A simple polygon with vertices in P is called monotonic if it is formed by a monotonic path and an edge connecting its endpoints. In this paper we study the problem of finding large monotonic polygons and paths in wp-sets. We establish some sharp bounds concerning these problems. We also study extremal problems on the number of monotonic paths and polygons of a wp-set.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
