
Operator algebras play a fundamental role in algebraic quantum field theory. In order to understand this, one has first to understand the crucial algebraic structures of the Euclidean space. The point is that relevant products possess an invariant meaning, that is, they are independent of the choice of a basis of the Euclidean space.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
