
handle: 10281/14778
In this paper, we study partially ordered structures associated to occurrence nets. An occurrence net is endowed with a symmetric, but in general non transitive, concurrency relation. By applying known techniques in lattice theory, from any such relation one can derive a closure operator, and then an orthocomplemented lattice. We prove that, for a general class of occurrence nets, those lattices, formed by closed subsets of net elements, are orthomodular. A similar result was shown starting from a simultaneity relation defined, in the context of special relativity theory, on Minkowski spacetime. We characterize the closed sets, and study several properties of lattices derived from occurrence nets; in particular we focus on properties related to K-density. We briefly discuss some variants of the construction, showing that, if we discard conditions, and only keep the partial order on events, the corresponding lattice is not, in general, orthomodular.
orthomodular lattices, partial order semantics, Petri nets
orthomodular lattices, partial order semantics, Petri nets
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
