Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

infinite unlimited churn short paper

Authors: Foreback, Dianne; Nesterenko, Mikhail; Tixeuil, Sébastien;

infinite unlimited churn short paper

Abstract

International audience; We study unlimited infinite churn in peer-to-peer overlay networks. Under this churn, arbitrary many peers may concurrently request to join or leave the overlay network; moreover these requests may never stop coming. We prove that unlimited adversarial churn, where processes may just exit the overlay network, is unsolvable. We focus on cooperative churn where exiting processes participate in the churn handling algorithm. We define the problem of unlimited infinite churn in this setting. We distinguish the fair version of the problem, where each request is eventually satisfied, from the unfair version that just guarantees progress. We focus on local solutions to the problem, and prove that a local solution to the Fair Infinite Unlimited Churn is impossible. We then present our algorithm UIUC that solves the Unfair Infinite Unlimited Churn Problem for a linearized peer-to-peer overlay network. We extend this solution to skip lists and skip graphs.

Country
France
Keywords

ACM: D.: Software/D.4: OPERATING SYSTEMS/D.4.4: Communications Management, ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.4: Distributed Systems, ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.2: Network Protocols, ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.1: Network Architecture and Design, [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], ACM: D.: Software/D.4: OPERATING SYSTEMS/D.4.5: Reliability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Related to Research communities