Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using Rough Set Theory and Decision Trees to Diagnose Enterprise Distress – Consideration of Corporate Governance Variables

Authors: Fu-Hsiang Chen; Der-Jang Chi; Chun-Yi Kuo;

Using Rough Set Theory and Decision Trees to Diagnose Enterprise Distress – Consideration of Corporate Governance Variables

Abstract

This study discusses the key factors of financial distress warning models for companies using corporate governance variables and financial ratios as the research variables, sieving out influential variables based on the attribute simplification process of rough set theory (RST). Then, we construct some classification models for diagnosing enterprise distress based on RST, using a data mining technique of decision trees with the selected indicators and variables. The empirical results obtained from analysis of enterprise distress indicators, show that financial distress is not only affected by the traditional financial ratios, but also by corporate governance variables. In addition, enterprise distress diagnosis models constructed based on RST and decision trees can effectively diagnose firms in times of crisis. In particular, the RST models are more accurate. This study provides a reference for better understanding the symptoms that might lead to a company’s financial crisis in advance and thus provide a valuable reference for investment decision making by stakeholders.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?