19 references, page 1 of 2
1. Guérin C., Reignier J., Richard J.C., Beuret P., Gacouin A., Boulain T., et al. (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med; 368:2159-2168.
2. Hoogendoorn W. E., Bongers, P. M., de Vet, H. C., Douwes, M., Koes, B. W., Miedema, M. C., ... & Bouter, L. M. (2000). Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: results of a prospective cohort study. Spine, 25(23), 3087-3092 [OpenAIRE]
3. Caussy C, Pattou F, Wallet F, et al. Prevalence of obesity among adult inpatients with COVID-19 in France. Lancet Diabetes Endocrinol. 2020;8(7):562-564.
4. De Looze M. P., Bosch T., Krause F., Stadler K.S., & O'Sullivan L. W. (2016). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59(5), 671-681.
5. Theurel J & Desbrosses K (2019) Occupational Exoskeletons: Overview of Their Benefits and Limitations in Preventing Work-Related Musculoskeletal Disorders, IISE Transactions on Occupational Ergonomics and Human Factors, 7:3-4, 264-280.
6. Alemi MM, Madinei S, Kim S, Srinivasan D, Nussbaum M.A. (2020) Effects of Two Passive Back-Support Exoskeletons on Muscle Activity, Energy Expenditure, and Subjective Assessments During Repetitive Lifting. Hum Factors.; 62(3):458-474.
7. Frost D.M., Abdoli E.M. & Stevenson J.M. (2009) Plad (personal lift assistive device) stiffness affects the lumbar flexion/extension moment and the posterior chain emg during symmetrical lifting tasks. J Electromyogr Kinesiol, 19 (6), e403-12.
8. Graham R.B., Agnew M.J. & Stevenson J.M. (2009) Effectiveness of an on-body lifting aid at reducing low back physical demands during an automotive assembly task: Assessment of EMG response and user acceptability. Appl Ergon, 40 (5), 936-942.
9. Koopman A. S., Kingma I., Faber G. S., de Looze M. P., & van Dieen, J. H. (2019). Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. Journal of biomechanics, 83, 97-103.
10. Miura K., Kadone H., Abe T., Koda M., Funayama T., Noguchi H., ... & Sato K. (2020). Successful Use of the Hybrid Assistive Limb for Care Support to Reduce Lumbar Load in a Simulated Patient Transfer. Asian Spine Journal.
11. Iishi C., Yamamoto H., & Takigawa D. (2015) Development of a new type of lightweight power assist suit for transfer work. In 2015 AsiaPacific Conference on Computer Aided System Engineering (pp. 208-213). IEEE. [OpenAIRE]
12. Cha J. S., Monfared S., Stefanidis D., Nussbaum M. A., & Yu D. (2020). Supporting surgical teams: Identifying needs and barriers for exoskeleton implementation in the operating room. Human Factors, 62(3), 377-390.
13. Settembre N., Maurice P., Paysant J., Theurel J., Claudon L., Kimmoun A., Levy B., Chenuel B., Ivaldi S. (2020) The use of exoskeletons to help with prone positioning in the intensive care unit during COVID-19. Annals of Physical and Rehabilitation Medecine.
14. Wioland L., L. Debay, J.-J. Atain-Kouadio (2019) Processus d'acceptabilité et d'acceptation des exosquelettes: évaluation par questionnaires. Références en santé au travail, TF 274, n. 160, pp. 49 - 76. [http://www.inrs.fr/dms/inrs/CataloguePapier/DMT/TI-TF-274/tf274.pdf] [OpenAIRE]
15. Penco L., Mingo Hoffman E., Modugno V., Gomes W., Mouret J.-B., Ivaldi S. (2020) Learning Robust Task Priorities and Gains for Control of Redundant Robots. IEEE Robotics and Automation Letters.
19 references, page 1 of 2