
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
MUSICNTWRK: Data Tools for Music Theory, Analysis and Composition
We present the API for MUSICNTWRK, a python library for pitch class set and rhythmic sequences classification and manipulation, the generation of networks in generalized music and sound spaces, deep learning algorithms for timbre recognition, and the sonification of arbitrary data. The software is freely available under GPL 3.0 and can be downloaded at www.musicntwrk.com or installed as a PyPi project (pip install musicntwrk).
- University of North Texas United States
ACM Computing Classification System: InformationSystems_INFORMATIONINTERFACESANDPRESENTATION(e.g.,HCI)
Microsoft Academic Graph classification: Programming language business.industry Computer science Deep learning Python (programming language) computer.software_genre Pitch class Software Music theory Sonification Artificial intelligence business computer Composition (language) Timbre computer.programming_language
ACM Computing Classification System: InformationSystems_INFORMATIONINTERFACESANDPRESENTATION(e.g.,HCI)
Microsoft Academic Graph classification: Programming language business.industry Computer science Deep learning Python (programming language) computer.software_genre Pitch class Software Music theory Sonification Artificial intelligence business computer Composition (language) Timbre computer.programming_language
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average Powered byBIP!

We present the API for MUSICNTWRK, a python library for pitch class set and rhythmic sequences classification and manipulation, the generation of networks in generalized music and sound spaces, deep learning algorithms for timbre recognition, and the sonification of arbitrary data. The software is freely available under GPL 3.0 and can be downloaded at www.musicntwrk.com or installed as a PyPi project (pip install musicntwrk).