Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2013 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrative Analysis of ChIP-Chip and ChIP-Seq Dataset

Authors: Zhu, Lihua Julie;

Integrative Analysis of ChIP-Chip and ChIP-Seq Dataset

Abstract

Epigenetic regulation and interactions between transcription factors and regulatory genomic regions play crucial roles in controlling transcriptional regulatory networks that drive development, environmental responses, and disease. Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) and ChIP followed by genomic tiling microarray hybridization (ChIP-chip) are the two of the most widely used technologies for genome-wide identification of DNA protein interactions and histone modification in vivo. Many algorithms and tools have been developed and evaluated that allow identification of transcription factor binding sites from ChIP-seq or ChIP-chip datasets. However, binding site identification is only the first step; the ultimate goal is to discover the regulatory network of the transcription factor (TF). Here, we present a common workflow for downstream analysis of ChIP-chip and ChIP-seq with an emphasis on annotating binding sites and integration with gene expression data to identify direct and indirect targets of the TF. These tools will help with the overall goal of unraveling transcriptional regulatory networks using datasets publicly available in GEO.

Keywords

Chromatin Immunoprecipitation, Binding Sites, High-Throughput Nucleotide Sequencing, Genetics and Genomics, Genomics, Animals, Humans, Gene Regulatory Networks, Molecular Biology, Software, Oligonucleotide Array Sequence Analysis, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    85
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
85
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!