Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Purification of Nitrogenase Proteins

Authors: Chi-Chung, Lee; Markus W, Ribbe; Yilin, Hu;

Purification of Nitrogenase Proteins

Abstract

A major hurdle in the studies of nitrogenase, one of the most complicated metalloenzymes known to date, is to obtain large amounts of intact, active proteins. Nitrogenase and related proteins are often multimeric and consist of metal centers that are critical for their activities. Most notably, the well-studied MoFe protein of Mo-nitrogenase is a heterotetramer that houses two of the most complicated metal clusters found in nature, the P-cluster and the FeMoco (or M-cluster). The structural complexity of these proteins and the oxygen sensitivity of their associated metal clusters, along with the demand for large amounts of high-quality proteins in most downstream analyses, make large-scale, high-yield purification of fully competent nitrogenase proteins a formidable task and yet, at the same time, a prerequisite for the success of nitrogenase research. This chapter highlights several methods that have been developed over the past few decades chiefly for the purification of naturally expressed nitrogenase in the diazotroph Azotobacter vinelandii. In addition, purification and Fe-S reconstitution strategies are also outlined for the heterologously expressed nitrogenase proteins in Escherichia coli.

Related Organizations
Keywords

Molybdenum, Azotobacter vinelandii, Protein Conformation, Chromatography, Ion Exchange, Bacterial Proteins, Multienzyme Complexes, Metalloproteins, Nitrogenase, Chromatography, Gel, Escherichia coli

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!