
pmid: 30171535
Spinal muscular atrophy (SMA) is one of the most common genetic causes of infantile death arising due to mutations in the SMN1 gene and the subsequent loss of motor neurons. With the discovery of the intronic splicing silencer N1 (ISS-N1) as a potential target for antisense therapy, several antisense oligonucleotides (ASOs) are being developed to include exon 7 in the final mRNA transcript of the SMN2 gene and thereby increasing the production of spinal motor neuron (SMN) proteins. Nusinersen (spinraza), a modified 2'-O-methoxyethyl (MOE) antisense oligonucleotide is the first drug to be approved by Food and Drug Agency (FDA) in December of 2016. Here we briefly review the pharmacological relevance of the drug, clinical trials, toxicity, and future directions following the approval of nusinersen.
Oligonucleotides, Exons, Genetic Therapy, Oligonucleotides, Antisense, Survival of Motor Neuron 1 Protein, Introns, Muscular Atrophy, Spinal, Drug Development, Mutation, Animals, Humans
Oligonucleotides, Exons, Genetic Therapy, Oligonucleotides, Antisense, Survival of Motor Neuron 1 Protein, Introns, Muscular Atrophy, Spinal, Drug Development, Mutation, Animals, Humans
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 44 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
