<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this chapter we will review the basic properties of Absolute Plane geometry, based on the Birkhoff axioms. All the theorems to be considered are also theorems of Euclidean geometry and hence, for the most part, will be familiar to the reader. For this reason, proofs will not be given except for a few theorems not ordinarily encountered in a beginning course in Euclidean geometry. Our intent is to sketch a natural progression for the theorems and to introduce notations and conventions that we will need in the later study of Hyperbolic geometry.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |