
pmid: 37076682
The metabolic benefits of brown adipose tissue (BAT) are well known. Increasing the BAT content and/or activity is a proposed therapeutic approach to combat metabolic disease. Activation and induction of endogenous BAT have achieved varying degrees of success in correcting obesity, insulin resistance, and cardiovascular disease, with some limitations. Transplantation of BAT from healthy donors is another approach proven safe and effective in rodent models. In diet-induced models of obesity and insulin resistance, BAT transplants prevent obesity, increase insulin sensitivity, and improve glucose homeostasis and whole-body energy metabolism. In mouse models of insulin-dependent diabetes, subcutaneous transplantation of healthy BAT produces long-term euglycemia without the need for insulin or immunosuppression. Considering the immunomodulatory and anti-inflammatory properties of healthy BAT, transplantation may be a more effective approach to combat metabolic disease in the long term. Here we describe in detail the technique for subcutaneous BAT transplantation.
Mice, Adipose Tissue, Brown, Animals, Insulin, Obesity, Insulin Resistance, Energy Metabolism, Diet
Mice, Adipose Tissue, Brown, Animals, Insulin, Obesity, Insulin Resistance, Energy Metabolism, Diet
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
