
Workflow technology is established in the business domain for several years. This fact suggests the need for detailed investigations in the qualification of conventional workflow technology for the evolving application domain of e-Science. This chapter discusses the requirements on scientific workflows, the state of the art of scientific workflow management systems as well as the ability of conventional workflow technology to fulfill requirements of scientists and scientific applications. It becomes clear that the features of conventional workflows can be advantageous for scientists but also that thorough enhancements are needed. We therefore propose a conceptual architecture for scientific workflow management systems based on the business workflow technology as well as extensions of existing workflow concepts in order to improve the ability of established workflow technology to be applied in the scientific domain with focus on scientific simulations.
Scientific workflows, 050, Office Automation (CR H.4.1), Workflow Management Systems, Business workflows, Simulation, BPEL
Scientific workflows, 050, Office Automation (CR H.4.1), Workflow Management Systems, Business workflows, Simulation, BPEL
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
