Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://link.springe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.springer.com/cont...
Part of book or chapter of book
Data sources: UnpayWall
https://doi.org/10.1007/978-0-...
Part of book or chapter of book . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Emergent Distribution of Operating System Services in Wireless Ad Hoc Networks

Authors: Peter Janacik; Tales Heimfarth;

Emergent Distribution of Operating System Services in Wireless Ad Hoc Networks

Abstract

Despite the advances in wireless, energy-constrained ad hoc networks, there are still many challenges given the limited capabilities of the current hardware. Therefore, our aim is to develop a lightweight, yet powerful operating system (OS) for these networks. We reject the brute force method of provisioning all necessary OS services at each node of the system. Instead, our approach aims to distribute the set of requested OS services over the network to reduce and balance load, improve quality of service, increase fairness and predictability. To limit the burden imposed on the network by the service distribution mechanism, only a subset of nodes, the coordinators, chosen by an underlying state-of-the-art topology control, are concerned with this task. Coordinators observe the state of nodes and OS services within their one-hop vicinity, i.e. their decision area, incorporating different aspects, such as energy, utilisation, or available resources in their decisions. Although each coordinator acquires information and triggers migrations of service states only locally within its decision area, a global-level result emerges, as decision areas naturally overlap. In this manner, an increased amount of work load e.g. in one decision area “floats” to the surrounding decision areas attracted by better conditions. In ns-2 simulations we demonstrate that the mechanism of emergence, which produces many fascinating results in natural systems, can successfully be applied in artificial systems to considerably increase the efficiency and quality of OS service distribution.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
bronze