
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The computer vision problem of face classification under several ambient and unfavorable conditions is considered in this study. Changes in expression, different lighting conditions and occlusions are the relevant factors that are studied in this present contribution. Non-negative Matrix Factorization (NMF) technique is introduced in the context of face classification and a direct comparison with Principal Component Analysis (PCA) is also analyzed. Two leading techniques in face recognition are also considered in this study noticing that NMF is able to improve these techniques when a high dimensional feature space is used. Finally, different distance metrics (L1, L2 and correlation) are evaluated in the feature space defined by NMF in order to determine the best one for this specific problem. Experiments demonstrate that the correlation is the most suitable metric for this problem.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 121 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
