Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/124_20...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advances in Asparagine Metabolism

Authors: Frédéric Marsolais; Frédéric Marsolais; Shrikaar Kambhampati; Shrikaar Kambhampati; Ebenezer Ajewole; Ebenezer Ajewole;

Advances in Asparagine Metabolism

Abstract

Asparagine is a key compound in the nitrogen metabolism of plants. It acts as a major form of nitrogen storage and transport to sink tissues. In the past 20 years, tremendous progress has been made in our understanding of the enzymology of asparagine metabolic pathways and of the biological role of asparagine metabolic enzymes in higher plants, by using a variety of approaches, ranging from protein crystallography to the use of mutants and overexpression lines in combination with molecular analysis and metabolite profiling. Most of the genes and enzymes involved in asparagine metabolism have been identified and characterized, including asparagine synthetase, β-cyanoalanine nitrilase/hydratase, asparaginase, serine:glyoxylate aminotransferase, and ω-amidase. In leaf, asparagine biosynthesis by asparagine synthetase is stimulated in the dark, a situation associated with carbon deficit. Asparagine appears to participate in photorespiration, providing an input of nitrogen to balance an output of serine or glycine to other pathways. Manipulating asparagine biosynthesis and degradation can alter seed development and composition, and has been used to mitigate the problem of acrylamide formation in food. There is an apparent positive association between the levels of asparagine present in reproductive organs and seed protein accumulation. This chapter presents a perspective on the field of asparagine metabolism, highlighting possible areas of future investigation.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!