Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

GP for Object Classification: Brood Size in Brood Recombination Crossover

Authors: Xiaoying Gao; Mengjie Zhang; Weijun Lou;

GP for Object Classification: Brood Size in Brood Recombination Crossover

Abstract

The brood size plays an important role in the brood recombination crossover method in genetic programming. However, there has not been any thorough investigation on the brood size and the methods for setting this size have not been effectively examined. This paper investigates a number of new developments of brood size in the brood recombination crossover method in GP. We first investigate the effect of different fixed brood sizes, then construct three dynamic models for setting the brood size. These developments are examined and compared with the standard crossover operator on three object classification problems of increasing difficulty. The results suggest that the brood recombination methods with all the new developments outperforms the standard crossover operator for all the problems. As the brood size increases, the system effective performance can be improved. When it exceeds a certain point, however, the effective performance will not be improved and the system will become less efficient. Investigation of three dynamic models for the brood size reveals that a good variable brood size which is dynamically set with the number of generations can further improve the system performance over the fixed brood sizes.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!