
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1007/11550907_9
The determination of the optimal architecture of a supervised neural network is an important and a difficult task. The classical neural network topology optimization methods select weight(s) or unit(s) from the architecture in order to give a high performance of a learning algorithm. However, all existing topology optimization methods do not guarantee to obtain the optimal solution. In this work, we propose a hybrid approach which combines variable selection method and classical optimization method in order to improve optimization topology solution. The proposed approach suggests to identify the relevant subset of variables which gives a good classification performance in the first step and then to apply a classical topology optimization method to eliminate unnecessary hidden units or weights. A comparison of our approach to classical techniques for architecture optimization is given.
[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE], [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE], [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG]
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
