
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Infrared spectroscopy and photometry with ISO covering most of the emission range of the interstellar medium has led to important progress in the understanding of the physics and chemistry of the gas, the nature and evolution of the dust grains and also the coupling between the gas and the grains. We review here the ISO results on the cool and low-excitation regions of the interstellar medium, where T gas≲ 500 K, nH ∼ 100–105 cm−3 and the electron density is a few 10−4.
[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO], [SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]
[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO], [SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
