Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Shape Memory and Sup...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Shape Memory and Superelasticity
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tensile Deformation of B19′ Martensite in Nanocrystalline NiTi Wires

Authors: Šittner, P. (Petr); Molnárová, O. (Orsolya); Bian, X. (Xiaohui); Heller, L. (Luděk); Seiner, H. (Hanuš);

Tensile Deformation of B19′ Martensite in Nanocrystalline NiTi Wires

Abstract

AbstractDeformation mechanisms activated during tensile deformation of nanocrystalline NiTi wire in martensite state were investigated by combination of two experimental methods: (i) analysis of the evolution of martensite-variant microstructures in grains of deformed wire by TEM and (ii) analysis of the evolution of martensite texture by in situ synchrotron X-ray diffraction. The obtained results are linked to the activity of various twinning processes in martensite. It is concluded that martensite reorientation proceeds via motion of interdomain interfaces, gives rise to reoriented martensite with microstructure consisting of single (001) compound-twinned domain in each grain and results in sharp two-fiber texture of the martensite. The reorientation process leaves behind only very small unrecovered strains and very few dislocation defects in the austenitic microstructure of the deformed wire after unloading and heating. Plastic deformation of B19′ martensite proceeds via peculiar deformation mechanism which combines (100) deformation twinning with [100]/(011) dislocation slip based kinking. It gives rise to very special martensite variant microstructures consisting of deformation twin bands and kink bands containing martensite lattice aligned with [010] direction and characteristic two-fiber martensite texture. Reverse martensitic transformation of plastically deformed martensite upon unloading and heating leaves behind large unrecovered strains and high density of lattice defects in austenite. But there are also significant recoverable strains up to 10%. While the martensite matrix in grains of plastically deformed wire transforms into parent austenite matrix, (20-1) deformation twins transform into {114} austenite twins.

Related Organizations
Keywords

NiTi materials, mechanical behavior, twinning, martensite, ferroelasticity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green
hybrid