
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Melanoma is the least common form of skin tumor, but it is potentially the most dangerous and responsible for the majority of skin cancer deaths. We suggest that the skin microbiome might be changed during the progression of melanoma. The aim of this study is to compare the composition of the skin microbiota between different locations (skin and melanoma) of a MeLiM (Melanoma-bearing Libechov Minipig) pig model (exophytic melanoma). Ninety samples were used for PCR-DGGE analysis with primers specifically targeting the V3 region of the 16S rRNA gene. The profiles were used for cluster analysis by UPGMA and principal coordinate analysis PCoA and also to calculate the diversity index (Simpson index of diversity). By comparing the obtained results, we found that both bacterial composition and diversity were significantly different between the skin and melanoma microbiomes. The abundances of Fusobacterium and Trueperella genera were significantly increased in melanoma samples, suggesting a strong relationship between melanoma development and skin microbiome changes.
DNA, Bacterial, Bacteria, Swine, Microbiota, Genetic Variation, Sequence Analysis, DNA, Fusobacterium, Disease Models, Animal, RNA, Ribosomal, 16S, melanoma, Animals, Swine, Miniature, skin microbiome, Melanoma, DNA Primers, Skin
DNA, Bacterial, Bacteria, Swine, Microbiota, Genetic Variation, Sequence Analysis, DNA, Fusobacterium, Disease Models, Animal, RNA, Ribosomal, 16S, melanoma, Animals, Swine, Miniature, skin microbiome, Melanoma, DNA Primers, Skin
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 60 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 1 | |
downloads | 33 |