
handle: 11104/0359979
AbstractThe effect of non-planar substrate surface on homogeneity and quality of cold-sprayed (CS) deposits was studied by scanning acoustic microscopy (SAM). Fe coatings were cold-sprayed onto Al substrates containing artificially introduced grooves of square- and trapezoid-shaped geometries, with flat or cylindrical bottoms. The Al substrates were either wrought or cold-sprayed, to comprehend their prospective influence on the Fe coatings buildup. SAM was then used to assess morphological properties of the materials from the cross-view and top-view directions. The microstructure below the surface of the studied samples was visualized by measuring the amplitudes of the reflection echoes and the velocity of the ultrasonic waves. The SAM analysis revealed that the regions of coating imperfections around the grooves are larger than what is suggested by standard scanning electron microscopy (SEM) observations. Furthermore, we found that the seemingly non-influenced coating regions that appear perfectly homogeneous and dense in SEM do, in fact, possess heterogeneous microstructure associated with the individual CS nozzle passes.
Condensed Matter - Materials Science, cold gas dynamic spray, ultrasonic characterization, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, machined surfaces, Physics - Applied Physics, Applied Physics (physics.app-ph), non-perpendicular impact, additive manufacturing
Condensed Matter - Materials Science, cold gas dynamic spray, ultrasonic characterization, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, machined surfaces, Physics - Applied Physics, Applied Physics (physics.app-ph), non-perpendicular impact, additive manufacturing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
