Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PROTEOMICSarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PROTEOMICS
Article
License: cc-by-sa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTEOMICS
Article . 2016
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computational quality control tools for mass spectrometry proteomics

Authors: Wout Bittremieux; Dirk Valkenborg; Lennart Martens; Kris Laukens;

Computational quality control tools for mass spectrometry proteomics

Abstract

As mass spectrometry-based proteomics has matured during the past decade a growing emphasis has been placed on quality control. For this purpose multiple computational quality control tools have been introduced. These tools generate a set of metrics that can be used to assess the quality of a mass spectrometry experiment. Here we review which different types of quality control metrics can be generated, and how they can be used to monitor both intra- and inter-experiment performance. We discuss the principal computational tools for quality control and list their main characteristics and applicability. As most of these tools have specific use cases it is not straightforward to compare their performance. For this survey we used different sets of quality control metrics derived from information at various stages in a mass spectrometry process and evaluated their effectiveness at capturing qualitative information about an experiment using a supervised learning approach. Furthermore, we discuss currently available algorithmic solutions that enable the usage of these quality control metrics for decision-making. This is the peer reviewed version of the following article: "Bittremieux, W., Valkenborg, D., Martens, L. & Laukens, K. Computational quality control tools for mass spectrometry proteomics. PROTEOMICS 17, 1600159 (2017)", which has been published in final form at https://doi.org/10.1002/pmic.201600159. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Country
Belgium
Subjects by Vocabulary

Microsoft Academic Graph classification: Process (engineering) Computer science media_common.quotation_subject computer.software_genre Set (abstract data type) Software Quality (business) Use case media_common Skyline business.industry Principal (computer security) Supervised learning Data mining business computer

Keywords

Proteomics, Quality Control, Biochemistry, Mass Spectrometry, Biology, Molecular Biology, Computer. Automation, Computational Biology, bioinformatics, Chemistry, Human medicine, Algorithms

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 127
    download downloads 911
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
  • 127
    views
    911
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
32
Top 10%
Top 10%
Top 10%
127
911
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.