Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Materials I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Materials Interfaces
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Materials Interfaces
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Materials Interfaces
Article . 2023 . Peer-reviewed
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Iminostilbene Functionalized Benzimidazoline for Enhanced n‐Type Solution Doping of Semiconducting Polymers for Organic Thermoelectrics

Authors: Rossi P.; Pallini F.; Coco G.; Mattiello S.; Tan W. L.; Mezzomo L.; Cassinelli M.; +4 Authors

An Iminostilbene Functionalized Benzimidazoline for Enhanced n‐Type Solution Doping of Semiconducting Polymers for Organic Thermoelectrics

Abstract

AbstractDoped organic semiconductors play a central role in the development of several innovative optoelectronic and energy harvesting applications. Currently, the realization of thermoelectric generators, which require both hole‐ and electron‐transporting materials with high electrical conductivity, is strongly hindered by the scarce availability of stable solution‐processable n‐dopants and their limited efficiency. Herein, the synthesis of 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzimidazol‐2‐yl)‐dibenzazepine (IStBI), a novel derivative belonging to the well‐known family of the benzimidazoline compounds, is presented. The functionalization with the planarized and rigid iminostilbene substituent allows, without significantly affecting the compound electronic structure, an efficient intercalation of the dopant molecules inside the ordered regions of thin films of the benchmark n‐type polymer poly(N,N′‐bis‐2‐octyldodecylnaphthalene‐1,4,5,8‐bis‐dicarboximide‐2,6‐diyl‐alt‐5,5′‐2,2′‐bithiophene) P(NDI2OD‐T2). Consequently, a maximum electrical conductivity of (1.14 ± 0.13) × 10−2 S cm−1 is recorded, exceeding by one order of magnitude what previously achieved upon solution doping of the reference P(NDI2OD‐T2) with benzimidazoline derivatives. The thermoelectric power factor is also simultaneously increased. The findings confirm that tailoring of the dopant chemical structure to improve structural interactions with the host semiconductors can be employed as a successful strategy to achieve more effective n‐doping, helping to close the performance gap with p‐type materials.

Country
Italy
Keywords

Technology, organic thermoelectrics, Physics, QC1-999, T, benzimidazoline derivatives; molecular doping; organic thermoelectrics; P(NDI2OD-T2);, benzimidazoline derivatives, molecular doping, P(NDI2OD‐T2)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold
Funded by