Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Separatio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Separation Science
License: CC BY SA
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Separation Science
2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

screening of semi volatile compounds in plants treated with coated cerium oxide nanoparticles by comprehensive two dimensional gas chromatography

Authors: Ivana Milenković; Ksenija Radotić; Jelena Trifković; Ljubodrag Vujisić; Vladimir P. Beškoski;

screening of semi volatile compounds in plants treated with coated cerium oxide nanoparticles by comprehensive two dimensional gas chromatography

Abstract

AbstractLiterature data about semi‐volatile organic compounds in plants and the effect of cerium oxide nanoparticles on them are scarce. Surface modification of nanoparticles may change nanoparticle‐environment interaction, and therefore affects compounds in plants. In this research, uncoated and glucose‐, levan‐, and pullulan‐coated cerium oxide nanoparticles were used for wheat and pea treatment during the growth. The aim was the screening of semi‐volatile organic compounds from plants’ shoots using comprehensive two‐dimensional gas chromatography–mass spectrometry, a powerful separation technique allowing to reach unique separation resolution, and investigation of qualitative changes after the treatment with coated cerium oxide nanoparticles. The results were analyzed by the identification of individual peaks and fingerprint analysis by image processing. Wheat samples contained a higher number of semi‐volatile organic compounds (108) compared to pea (77) but were less affected by the treatments with coated nanoparticles. The highest number of compounds was detected in wheat after the treatment with levan‐ and pullulan‐coated nanoparticles, and in pea after treatment with levan‐coated nanoparticles. This article reports a successful application of a semi‐volatile organic compounds profile presented only as categorical variables and unique fingerprint images for the inter‐cultivar recognition. This method may be useful in screening nanoparticles’ effects on different plants.

Country
Serbia
Keywords

Volatile Organic Compounds, plants, gas chromatography, screening, Cerium, Gas Chromatography-Mass Spectrometry, Nanoparticles, nanoparticles, cerium oxide, Pisum sativum, Triticum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 107
    download downloads 10
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 107
    views
    10
    downloads
    Data sourceViewsDownloads
    10710
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
Top 10%
Average
Average
107
10
hybrid