Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Comprehensive Physio...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Comprehensive Physiology
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pulmonary Vascular Diseases

Authors: Melot, Christian; Naeije, Robert;

Pulmonary Vascular Diseases

Abstract

AbstractDiseases of the pulmonary vasculature are a cause of increased pulmonary vascular resistance (PVR) in pulmonary embolism, chronic thromboembolic pulmonary hypertension (CTEPH), and pulmonary arterial hypertension or decreased PVR in pulmonary arteriovenous malformations on hereditary hemorrhagic telangiectasia, portal hypertension, or cavopulmonary anastomosis. All these conditions are associated with a decrease in both arterial Po2 and Pco2. Gas exchange in pulmonary vascular diseases with increased PVR is characterized by a shift of ventilation and perfusion to high ventilation‐perfusion ratios, a mild to moderate increase in perfusion to low ventilation‐perfusion ratios, and an increased physiologic dead space. Hypoxemia in these patients is essentially explained by altered ventilation‐perfusion matching amplified by a decreased mixed venous Po2 caused by a low cardiac output. Hypocapnia is accounted for by hyperventilation, which is essentially related to an increased chemosensitivity. A cardiac shunt on a patent foramen ovale may be a cause of severe hypoxemia in a proportion of patients with pulmonary hypertension and an increase in right atrial pressure. Gas exchange in pulmonary arteriovenous malformations is characterized by variable degree of pulmonary shunting and/or diffusion‐perfusion imbalance. Hypocapnia is caused by an increased ventilation in relation to an increased pulmonary blood flow with direct peripheral chemoreceptor stimulation by shunted mixed venous blood flow. © 2011 American Physiological Society. Compr Physiol 1:593‐619, 2011.

Country
Belgium
Keywords

Lung Diseases, Physiologie générale, Pulmonary Gas Exchange, Pulmonary Veins, Animals, Humans, Vascular Diseases, Sciences bio-médicales et agricoles, Pulmonary Artery

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?