
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>AbstractMicafungin, a new echinocandin antifungal agent, has been used widely for the treatment of various fungal infections in human populations. Micafungin is predominantly cleared by biliary excretion and it binds extensively to plasma proteins. Micafungin body weight‐adjusted clearance is higher in neonates than in adults, but the mechanisms underlying this difference are not understood. Previous work had revealed the roles of sinusoidal uptake (Na+‐taurocholate co‐transporting peptide, NTCP; organic anion transporting polypeptide, OATP) as well as canalicular efflux (bile salt export pump, BSEP; breast cancer resistance protein, BCRP) transporters in micafungin hepatobiliary elimination. In the present study, the relative protein expression of hepatic transporters was compared between liver homogenates from neonates and adults. Also, the extent of micafungin binding to serum from neonates and adults was measuredin vitro. The results indicate that relative expression levels of NTCP, OATP1B1/3, BSEP, BCRP and MRP3 were similar in neonates and in adults. However, the micafungin fraction unbound (fu) in neonatal serum was about 8‐fold higher than in the adult serum (0.033±0.012 versus 0.004±0.001, respectively). While there was no evidence for different intrinsic hepatobiliary clearance of micafungin between neonates and adults, our data suggest that age‐dependent serum protein binding of micafungin is responsible for its higher clearance in neonates compared with adults. Copyright © 2011 John Wiley & Sons, Ltd.
Adult, Antifungal Agents, Symporters, Age Factors, Infant, Newborn, Life Sciences, Organic Anion Transporters, Blood Proteins, Echinocandins, Lipopeptides, Liver, Micafungin, Humans, Biliary Tract, Protein Binding
Adult, Antifungal Agents, Symporters, Age Factors, Infant, Newborn, Life Sciences, Organic Anion Transporters, Blood Proteins, Echinocandins, Lipopeptides, Liver, Micafungin, Humans, Biliary Tract, Protein Binding
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 57 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
