<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract2′‐Deoxyadenosine triphosphate (dATP) derivatives bearing diverse substituents (Cl, NH2, CH3, vinyl, ethynyl, and phenyl) at position 2 were prepared and tested as substrates for DNA polymerases. The 2‐phenyl‐dATP was not a substrate for DNA polymerases, but the dATPs bearing smaller substituents were good substrates in primer‐extension experiments, producing DNA substituted in the minor groove. The vinyl‐modified DNA was applied in thiol–ene addition and the ethynyl‐modified DNA was applied in a CuAAC click reaction to form DNA labelled with fluorescent dyes in the minor groove
Base Sequence, fluorescent labelling, bioconjugation, DNA, DNA-Directed DNA Polymerase, DNA polymerase, Nucleic Acid Denaturation, nucleotides, Communications, Substrate Specificity, Deoxyadenine Nucleotides, Nucleic Acid Conformation, Thermodynamics, DNA modification
Base Sequence, fluorescent labelling, bioconjugation, DNA, DNA-Directed DNA Polymerase, DNA polymerase, Nucleic Acid Denaturation, nucleotides, Communications, Substrate Specificity, Deoxyadenine Nucleotides, Nucleic Acid Conformation, Thermodynamics, DNA modification
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 51 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |