Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advanced Materialsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advanced Materials
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research.fi
Article . 2025 . Peer-reviewed
Data sources: Research.fi
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Compliant Lattice Modulations Enable Anomalous Elasticity in Ni–Mn–Ga Martensite

Authors: Kristýna Repček; Pavla Stoklasová; Tomáš Grabec; Petr Sedlák; Juraj Olejňák; Mariia Vinogradova; Alexei Sozinov; +4 Authors

Compliant Lattice Modulations Enable Anomalous Elasticity in Ni–Mn–Ga Martensite

Abstract

AbstractHigh mobility of twin boundaries in modulated martensites of Ni–Mn–Ga‐based ferromagnetic shape memory alloys holds a promise for unique magnetomechanical applications. This feature has not been fully understood so far, and in particular, it has yet not been unveiled what makes the lattice mechanics of modulated Ni–Mn–Ga specifically different from other martensitic alloys. Here, results of dedicated laser‐ultrasonic measurements on hierarchically twinned five‐layer modulated (10M) crystals fill this gap. Using a combination of transient grating spectroscopy and laser‐based resonant ultrasound spectroscopy, it is confirmed that there is a shear elastic instability in the lattice, being significantly stronger than in any other martensitic material and also than what the first‐principles calculations for Ni–Mn–Ga predict. The experimental results reveal that the instability is directly related to the lattice modulations. A lattice‐scale mechanism of dynamic faulting of the modulation sequence that explains this behavior is proposed; this mechanism can explain the extraordinary mobility of twin boundaries in 10M.

Keywords

modulated martensite, Condensed Matter - Materials Science, lattice instability, twinning, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, elastic constants, ferromagnetic shape memory alloys, laser-ultrasonics, Ni–Mn–Ga

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
hybrid