
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 21482743
Chronic kidney disease (CKD) is common. Kidney disease severity can be classified by estimated glomerular filtration rate (GFR) and albuminuria, but more accurate information regarding risk for progression to kidney failure is required for clinical decisions about testing, treatment, and referral.To develop and validate predictive models for progression of CKD.Development and validation of prediction models using demographic, clinical, and laboratory data from 2 independent Canadian cohorts of patients with CKD stages 3 to 5 (estimated GFR, 10-59 mL/min/1.73 m(2)) who were referred to nephrologists between April 1, 2001, and December 31, 2008. Models were developed using Cox proportional hazards regression methods and evaluated using C statistics and integrated discrimination improvement for discrimination, calibration plots and Akaike Information Criterion for goodness of fit, and net reclassification improvement (NRI) at 1, 3, and 5 years.Kidney failure, defined as need for dialysis or preemptive kidney transplantation.The development and validation cohorts included 3449 patients (386 with kidney failure [11%]) and 4942 patients (1177 with kidney failure [24%]), respectively. The most accurate model included age, sex, estimated GFR, albuminuria, serum calcium, serum phosphate, serum bicarbonate, and serum albumin (C statistic, 0.917; 95% confidence interval [CI], 0.901-0.933 in the development cohort and 0.841; 95% CI, 0.825-0.857 in the validation cohort). In the validation cohort, this model was more accurate than a simpler model that included age, sex, estimated GFR, and albuminuria (integrated discrimination improvement, 3.2%; 95% CI, 2.4%-4.2%; calibration [Nam and D'Agostino χ(2) statistic, 19 vs 32]; and reclassification for CKD stage 3 [NRI, 8.0%; 95% CI, 2.1%-13.9%] and for CKD stage 4 [NRI, 4.1%; 95% CI, -0.5% to 8.8%]).A model using routinely obtained laboratory tests can accurately predict progression to kidney failure in patients with CKD stages 3 to 5.
Aged, 80 and over, Male, Risk, Age Factors, Middle Aged, Models, Theoretical, Risk Assessment, Cohort Studies, Calibration, Disease Progression, Albuminuria, Humans, Calcium, Female, Kidney Diseases, Renal Insufficiency, Biomarkers, Aged, Forecasting, Glomerular Filtration Rate
Aged, 80 and over, Male, Risk, Age Factors, Middle Aged, Models, Theoretical, Risk Assessment, Cohort Studies, Calibration, Disease Progression, Albuminuria, Humans, Calcium, Female, Kidney Diseases, Renal Insufficiency, Biomarkers, Aged, Forecasting, Glomerular Filtration Rate
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
