publication . Article . 2018

Decay photons from the axionlike particles burst of type II supernovae

Jaeckel, J.; Malta, P. C.; Redondo, J.;
Open Access English
  • Published: 27 Sep 2018
  • Publisher: APS
  • Country: Spain
Abstract
We determine limits from SN 1987A on massive axionlike particles with masses in the 10 keV-100 MeV range and purely coupled to two photons. Axionlike particles produced in the core collapse escape from the star and decay into photons that can be observed as a delayed and diffuse burst. We discuss the time and angular distribution of such a signal. Looking into the future, we also estimate the possible improvements caused by better gamma-ray detectors or the explosion of the red supergiant Betelgeuse in a supernova event.
Subjects
arXiv: Astrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Galaxy Astrophysics
free text keywords: Physics, Astronomy, Red supergiant, Photon, Particle physics, Supernova, Betelgeuse, Astroparticle physics, Angular distribution
Funded by
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
42 references, page 1 of 3

[1] C. Coriano and N. Irges, Windows over a new low-energy axion, Phys. Lett. B 651, 298 (2007).

[2] A. G. Dias, A. C. B. Machado, C. C. Nishi, A. Ringwald, and P. Vaudrevange, The quest for an intermediate-scale accidental axion and further ALPs, J. High Energy Phys. 06 (2014) 037. [OpenAIRE]

[3] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, String axiverse, Phys. Rev. D 81, 123530 (2010). [OpenAIRE]

[4] M. Cicoli, Axion-like particles from string compactifications, arXiv:1309.6988.

[5] A. Ringwald, Axions and axion-like particles, arXiv:1407 .0546.

[6] J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Annu. Rev. Nucl. Part. Sci. 60, 405 (2010).

[7] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38, 1440 (1977).

[8] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40, 223 (1978).

[9] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40, 279 (1978). [OpenAIRE]

[10] M. Giannotti, L. D. Duffy, and R. Nita, New constraints for heavy axion-like particles from supernovae, J. Cosmol. Astropart. Phys. 01 (2011) 015.

[11] D. Cadamuro and J. Redondo, Cosmological bounds on pseudo Nambu-Goldstone bosons, J. Cosmol. Astropart. Phys. 02 (2012) 032.

[12] J. Redondo, Bounds on very weakly interacting sub-eV particles (WISPs) from cosmology and astrophysics, arXiv: 0810.3200.

[13] S. Alekhin et al., A facility to search for hidden particles at the CERN SPS: the SHiP physics case, Rep. Prog. Phys. 79, 124201 (2016).

[14] J. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles with LEP and LHC, Phys. Lett. B 753, 482 (2016). [OpenAIRE]

[15] J. L. Hewett et al., Fundamental physics at the intensity frontier, arXiv:1205.2671.

42 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue