Disturbance opens recruitment sites for bacterial colonization in activated sludge

Preprint OPEN
Marr, Junko; Spear, John; Drewes, Jörg; Vuono, David;
  • Related identifiers: doi: 10.1101/014456
  • Subject: bepress|Life Sciences|Biology | bepress|Life Sciences|Ecology and Evolutionary Biology

Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ec... View more
  • References (22)
    22 references, page 1 of 3

    360   Many   microbial   studies   have   aimed   to   determine   the   relative   contributions   of   such   ecological   forcing  mechanisms  by  calculating  the  phylogenetic  relatedness  of  communities  relative  to  null   expectations   (Horner-­‐Devine   and   Bohannan,   2006;   Armitage   et   al.,   2012;   Stegen   et   al.,   2012;   Wang   et   al.,   2012;   Meuser   et   al.,   2013;   Evans   and   Wallenstein,   2014).   Phylogenies   that   are   either  clustered  or  overdispersed  have  traditionally  been  interpreted  to  reflect  environmental  

    365   filters  (e.g.,  habitat  filtering)  or  biological  interactions  (e.g.,  competitive  exclusion),  respectively,   that  are  responsible  for  the  assembly  of  local  communities  (Webb,  2000).  However,  given  the   assumption   that   phylogenetic   relatedness   is   a   proxy   for   trait   and   niche   similarity,   the   declaration   of   assembly   mechanisms   should   be   used   cautiously   (Mayfield   and   Levine,   2010;   HilleRisLambers  et  al.,  2012).  This  may  be  especially  true  for  bacteria,  due  to  their  high  dispersal  

    370   rates   and   genetic   recombination   rates   (Hunt   et   al.,   2008;   Polz   et   al.,   2013;   Cordero   and   Polz,   2014).  In  the  case  of  the  sludge  communities,  we  observed  phylogenetic  overdispersion  during  

    Cordero,  O.X.,  Wildschutte,  H.,  Kirkup,  B.,  Proehl,  S.,  Ngo,  L.,  Hussain,  F.,  et  al.  (2012)  Ecological   populations   of   bacteria   act   as   socially   cohesive   units   of   antibiotic   production   and   resistance.  Science  (80-­‐.  ).  337:  1228-1231.  

    DeSantis,   T.Z.,   Hugenholtz,   P.,   Larsen,   N.,   Rojas,   M.,   Brodie,   E.L.,   Keller,   K.,   et   al.   (2006)   Greengenes,  a  chimera-­‐checked  16S  rRNA  gene  database  and  workbench  compatible  with   ARB.  Appl.  Environ.  Microbiol.  72:  5069-72.  

    Doolittle,  W.F.  (2009)  Eradicating  typological  thinking  in  prokaryotic  systematics  and  evolution.   Cold  Spring  Harb.  Symp.  Quant.  Biol.  74:  197-204.  

    Doolittle,   W.F.   and   Zhaxybayeva,   O.   (2010)   Metagenomics   and   the   Units   of   Biological   Organization.  Bioscience  60:  102-112.  

    Edgar,   R.C.,   Haas,   B.J.,   Clemente,   J.C.,   Quince,   C.,   and   Knight,   R.   (2011)   UCHIME   improves   sensitivity  and  speed  of  chimera  detection.  Bioinformatics  27:  2194-200.  

    Evans,   S.E.   and   Wallenstein,   M.D.   (2014)   Climate   change   alters   ecological   strategies   of   soil   bacteria.  Ecol.  Lett.  17:  155-64.  

    Faith,  J.J.,  Mcnulty,  N.P.,  Rey,  F.E.,  and  Gordon,  J.I.  (2011)  Predicting  a  Human  Gut  Microbiota's   Response  to  Diet  in  Gnotobiotic  Mice.  333:  101-104.  

  • Related Organizations (1)
  • Metrics
Share - Bookmark