Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of the Nati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stages of medical data processing for solving problems with machine learning algorithms

Stages of medical data processing for solving problems with machine learning algorithms

Abstract

У роботі висвітлено актуальність і перспективи застосування машинного навчання для обробки медичних даних. Розглянуто різноманіття джерел та форматів інформації, а також описано ключові алгоритми машинного навчання. Окрему увагу приділено попередній обробці та підготовці даних, що відіграє вирішальну роль у забезпеченні точності, надійності й етичності побудованих моделей. Результати роботи демонструють важливість мультидисциплінарного підходу, в якому поєднуються зусилля фахівців із медицини, технічних спеціалістів і дослідників із питань конфіденційності, з метою підвищення ефективності діагностики та лікування в сучасній охороні здоров’я. Іл.: 3. Бібліогр.: 13 назв.

The paper highlights the relevance and prospects of machine learning for medical data processing. The article discusses the variety of sources and formats of information and describes key machine learning algorithms. Particular attention is paid to data pre-processing and preparation, which plays a crucial role in ensuring the accuracy, reliability, and ethics of the built models. The results of the work demonstrate the importance of a multidisciplinary approach that combines the efforts of medical professionals, technical specialists, and privacy researchers to improve the efficiency of diagnosis and treatment in modern healthcare. Il.: 3. Bibl.: 13 titles.

Keywords

Big Data, validation, anomalous values, medical data, кластеризація, машинне навчання, валідація, аномальні значення, machine learning, normalization, energy saving, медичні дані, нормалізація, енергозбереження, clustering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities