
The necessity to transport goods has always been a crucial component of everysociety. It is difficult to imagine a modern country without an advanced transport network andtechnology, which is why the latest computer systems have been developed over the past decades tomeet the needs of carriers. The study of this logistics segment shows that the complexity of thetechnological process of international intermodal transportation causes a range of problems to allparties involved in transportation. An advanced transport network provides a large number ofpossible options for the transportation of goods or commodities. That is why the computerization ofthe planning process is the next step in the evolution of transport logistics. This article describes theusage of software based on genetic algorithms to settle and improve the use of commercialIncoterms 2020. Taking into account all the limitations of existing software, it is proposed to use aheuristic approach to find the optimum transportation option and automate the planning process.Ukraine has always assigned a priority role to the railway mode of transport. This is why therailway industry has always been an integral part of the multimodal transportation process.Analysis of imports and exports shows stable growth over the past ten year period. Additionally,Ukraine enjoys a very advantageous geographical location, in that four important transportcorridors cross the territory of our country. Studies indicate that innovations in this area willpositively contribute to the credibility of Ukrainian carriers. Further, the article describes thetypical problems that arise during the usage of the basic Incoterms terms of delivery, including thecomplexity of customs procedures and clearance of goods, as well as unforeseen monetary costsarising from the difference in the laws of the countries participating in the transportation process.The author proposes the automation of the transportation planning process as a key to solving thesedisadvantages. The proposed innovation does not require significant investment and can createpositive economic value by substantially reducing the cost of transportation.
Потреби у переміщенні товарів завжди були ключовою складовоюсуспільства. Важко уявити сучасну країну без розвинених транспортних систем ітехнологій, саме тому протягом останніх десятиліть упроваджуються новітні комп’ютерні системи для задоволення потреб перевізників. Дослідження цього сегменталогістики показують, що складність технологічного процесу міжнародних змішанихперевезень завдає певних проблем усім учасникам транспортування. Стаття описуєвикористання програмного забезпечення на базі генетичних алгоритмів для врегулювання тапокращення використання комерційних умов – Інкотермс 2020. Беручи до уваги усі недолікиіснуючих програмних засобів, запропоновано використання евристичного підходу для пошукуоптимального варіанта перевезень та автоматизації процесу планування.
intermodal transportation, genetic algorithms, Incoterms, optimal route, customs procedures, heuristic methods, інтермодальні перевезення, генетичні алгоритми, Інкотермс, оптимальний маршрут, митні процедури, евристичні методи
intermodal transportation, genetic algorithms, Incoterms, optimal route, customs procedures, heuristic methods, інтермодальні перевезення, генетичні алгоритми, Інкотермс, оптимальний маршрут, митні процедури, евристичні методи
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
