Shopping intention prediction using decision trees

Article English OPEN
Šebalj, Dario; Franjković, Jelena; Hodak, Kristina;
(2017)
  • Publisher: Instituto Superior Politécnico de Viseu
  • Journal: Millenium (issn: 0873-3015, eissn: 1647-662X)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.29352/mill0204.01.00155
  • Subject: Classification algorithms | Special aspects of education | Retailer’s image | RA1-1270 | Public aspects of medicine | Price image | Shopping intention | Machine learning | LC8-6691

Introducción: El precio se considera un elemento descuidado del marketing-mix debido a la complejidad de la gestión de precios y la sensibilidad de los clientes en los cambios de precios. Esto lleva a reacciones más rápidas de los clientes a ese cambio. En consecuencia,... View more
  • References (12)
    12 references, page 1 of 2

    Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., & Scuse, D. (2016). WEKA Manual for Version 3-8-0.

    Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi: 10.1023/A:1010933404324

    Crone, S. F., & Soopramanien, D. (2005). Predicting customer online shopping adoption-an evaluation of data mining and market modelling approaches. DMIN. pp. 215-221.

    Franjković, J. (2017). Prices and price image of retailer. Thesis of the postgraduate specialist study. Osijek: Faculty of Economics in Osijek.

    Ganchev, T., Zervas, P., Fakotakis, N., & Kokkinakis, G. (2006). Benchmarking Feature Selection Techniques on the Speaker Verification Task. Fifth International Symposium on Communication Systems, Networks And Digital Signal Processing, pp. 314-318.

    Hall, M. A., & Holmes, G. (2003). Benchmarking Attribute Selection Techniques for Discrete Class Data Mining. IEEE Transactions on Knowledge and Data Engineering, 15(3), 1437-1447. doi: 10.1109/TKDE.2003.1245283

    Hssina, B., Merbouha, A., Ezzikouri, H., & Erritali, M. (2014). A comparative study of decision tree ID3 and C4.5. International Journal of Advanced Computer Science and Applications, 4(2), 13-19.doi: 10.14569/SpecialIssue.2014.040203

    Kalmegh, S. (2015). Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News. IJISET - International Journal of Innovative Science, Engineering & Technology, 2(2), 438-446. Retrieved from http://ijiset.com/vol2/v2s2/IJISET_V2_I2_63.pdf

    Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22. Retrieved from https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf

    Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

  • Metrics