Wood density and anatomy of three Eucalyptus species: implications for hydraulic conductivity

Article English OPEN
Barotto, Antonio J.; Monteoliva, Silvia; Gyenge, Javier; Martínez-Meier, Alejandro; Moreno, Karen; Tesón, Natalia; Fernández, María Elena;
  • Publisher: INIA
  • Journal: Forest Systems, volume 26, issue 1,pagee010 (issn: 2171-9845, eissn: 2171-9845)
  • Publisher copyright policies & self-archiving
  • Identifiers: doi: 10.5424/fs/2017261-10446
  • Subject: Ciencias Agrarias | SD1-669.5 | vessel composition | wood density | functional wood anatomy; lumen fraction; theoretical hydraulic conductivity; vessel composition; wood density | functional wood anatomy | Forestry | lumen fraction | theoretical hydraulic conductivity

Aim of the study: To characterize wood anatomical traits of three Eucalyptus species that differ in wood density and ecological requirements, and to examine the relationships between some anatomical features, wood density, and theoretical xylem hydraulic conductivity (K... View more
  • References (34)
    34 references, page 1 of 4

    Barotto AJ, Fernández ME, Gyenge J, Martínez Meier A, Meyra A, Monteoliva S, 2016. First insights into the functional role of vasicentric tracheids and parenchyma in Eucalyptus species with solitary vessels: do they contribute to xylem efficiency or safety? Tree Physiol 36(12): 1485- 1497. https://doi.org/10.1093/treephys/tpw072

    Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA, 2010. The dynamics of embolism repair in xylem: In vivo visualizations using high-resolution computed tomography. Plant Physiol 154(3): 1088-1095. https://doi. org/10.1104/pp.110.162396

    Brodribb TJ, Holbrook NM, Hill RS, 2005. Seedling growth in conifers and angiosperms: Impacts of contrasting xylem structure. Aust J Bot. 53(8): 749-755. https://doi. org/10.1071/BT05049

    Charrier G, Torres-Ruiz JM, Badel E, Burlett R, Choat B, Cochard H, Delmas CEL, Domec JC, Jansen S, King A, et al., 2016. Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension. Plant Physiol 172(3): 1657-1668. https://doi.org/10.1104/ pp.16.01079

    Ferrere P, Lupi AM, Boca R, Nakama V, Alfieri A, 2008. Biomasa en plantaciones de Eucalyptus viminalis Labill. de la provincia de Buenos Aires, Argentina. Ciência Florestal 18: 293-307. https://doi.org/10.5902/19805098440

    Gartner BL, 1995. Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: BL Gartner (ed.), Plant Stems: Physiological and Functional Morphology: 125-149. Academic Press, New York. https:// doi.org/10.1016/b978-012276460-8/50008-4

    Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA, 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126(4): 457-461. https://doi.org/10.1007/ s004420100628

    Hacke UG, Sperry JS, 2003. Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo. Plant, Cell Environ 26(2): 303-311. https://doi. org/10.1046/j.1365-3040.2003.00962.x

    Hubbard RM, Ryan MG, Stiller V, Sperry JS, 2001. Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ 24 (1): 113-121. https://doi.org/10.1046/j.1365- 3040.2001.00660.x

    Igartúa DV, Monteoliva S, 2010. Densidad básica, longitud de fibras y crecimiento en dos procedencias de Eucalyptus globulus en Argentina. Bosque 31(2): 150-156. https://doi. org/10.4067/S0717-92002010000200008

  • Related Research Results (1)
    Inferred by OpenAIRE
    Global Wood Density Database (2009)
  • Related Organizations (1)
  • Metrics