publication . Article . Preprint . Other literature type . 2018

arXiv : Exponentially Light Dark Matter from Coannihilation

D’Agnolo, Raffaele; Mondino, Cristina; Ruderman, Joshua; Wang, Po-Jen;
Open Access
  • Published: 07 Mar 2018 Journal: Journal of High Energy Physics, volume 2,018 (eissn: 1029-8479, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
Abstract
Dark matter may be a thermal relic whose abundance is set by mutual annihilations among multiple species. Traditionally, this coannihilation scenario has been applied to weak scale dark matter that is highly degenerate with other states. We show that coannihilation among states with split masses points to dark matter that is exponentially lighter than the weak scale, down to the keV scale. We highlight the regime where dark matter does not participate in the annihilations that dilute its number density. In this "sterile coannihilation" limit, the dark matter relic density is independent of its couplings, implying a broad parameter space of thermal relic targets ...
Subjects
arXiv: Astrophysics::Cosmology and Extragalactic Astrophysics
free text keywords: hep-ph, Particle Physics - Phenomenology, Nuclear and High Energy Physics, Particle physics, Light dark matter, Quantum electrodynamics, Physics, Thermal, Beyond Standard Model, Cosmology of Theories beyond the SM, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, High Energy Physics - Phenomenology
Related Organizations
131 references, page 1 of 9

[1] B. W. Lee and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977). doi:10.1103/PhysRevLett.39.165

[2] E. W. Kolb and M. S. Turner, Front. Phys. 69, 1 (1990).

[3] P. Gondolo and G. Gelmini, Nucl. Phys. B 360, 145 (1991). doi:10.1016/0550-3213(91)90438-4

[4] G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267, 195 (1996) doi:10.1016/0370- 1573(95)00058-5 [hep-ph/9506380].

[5] G. Angloher et al. [CRESST Collaboration], Eur. Phys. J. C 76, no. 1, 25 (2016) doi:10.1140/epjc/s10052-016-3877-3 [arXiv:1509.01515 [astro-ph.CO]].

[6] R. Agnese et al. [SuperCDMS Collaboration], Phys. Rev. Lett. 116, no. 7, 071301 (2016) doi:10.1103/PhysRevLett.116.071301 [arXiv:1509.02448 [astro-ph.CO]].

[7] D. S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett. 116, no. 16, 161301 (2016) doi:10.1103/PhysRevLett.116.161301 [arXiv:1512.03506 [astro-ph.CO]].

[8] E. Aprile et al. [XENON Collaboration], Phys. Rev. Lett. 119, no. 18, 181301 (2017) doi:10.1103/PhysRevLett.119.181301 [arXiv:1705.06655 [astro-ph.CO]].

[9] X. Cui et al. [PandaX-II Collaboration], Phys. Rev. Lett. 119, no. 18, 181302 (2017) doi:10.1103/PhysRevLett.119.181302 [arXiv:1708.06917 [astro-ph.CO]].

[10] K. Griest and D. Seckel, Phys. Rev. D 43, 3191 (1991). doi:10.1103/PhysRevD.43.3191

[11] R. T. D'Agnolo and J. T. Ruderman, Phys. Rev. Lett. 115, no. 6, 061301 (2015) doi:10.1103/PhysRevLett.115.061301 [arXiv:1505.07107 [hep-ph]].

[12] A. Delgado, A. Martin and N. Raj, Phys. Rev. doi:10.1103/PhysRevD.95.035002 [arXiv:1608.05345 [hep-ph]].

[15] R. T. D'Agnolo, D. Pappadopulo and J. T. Ruderman, Phys. Rev. Lett. 119, no. 6, 61102 (2017) doi:10.1103/PhysRevLett.119.061102 [arXiv:1705.08450 [hep-ph]].

[16] M. Garny, J. Heisig, B. Lulf and S. Vogl, Phys. Rev. D 96, no. 10, 103521 (2017) doi:10.1103/PhysRevD.96.103521 [arXiv:1705.09292 [hep-ph]].

[17] M. Garny, J. Heisig, M. Hufnagel and B. Lulf, arXiv:1802.00814 [hep-ph].

131 references, page 1 of 9
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue