publication . Article . Other literature type . 2017

Bagnold Dune Field Sedimentary Processes

Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M.; Stein, N.; Rubin, D. M.; Sullivan, R.; Banham, S.; Lamb, M. P.; Bridges, N. T.; ...
Open Access English
  • Published: 01 Dec 2017 Journal: Journal of Geophysical Research. Planets, volume 122, issue 12, pages 2,544-2,573 (issn: 2169-9097, eissn: 2169-9100, Copyright policy)
  • Publisher: John Wiley and Sons Inc.
Abstract
Key Points Impact ripples, grainfall, and grainflows occur on Martian dunes and are similar to terrestrial counterpartsUnique, meter‐scale large ripples are found on Martian dunes and would distinguish the Martian and terrestrial eolian rock recordsThe angle of repose on Martian dunes and large ripples is found to be around 29°, which is similar to that found on Earth
Subjects
free text keywords: Investigations of the Bagnold Dune Field, Gale crater, Global Change, Geomorphology and Weathering, Hydrology, Geomorphology: General, Sediment Transport, Oceanography: Physical, Planetary Sciences: Solid Surface Planets, Erosion and Weathering, Planetary Sciences: Solar System Objects, Mars, Research Article, Research Articles, aeolian, sand dunes, ripples, Gale crater, bed forms, Bagnold Dune Field, Science & Technology, Physical Sciences, Geochemistry & Geophysics, DIRECTIONALLY VARYING FLOWS, AEOLIAN DUNE, LONGITUDINAL DUNES, NUMERICAL SIMULATIONS, FIELD PATTERN, WIND RIPPLES, WHITE SANDS, NEW-MEXICO, AIR-FLOW
101 references, page 1 of 7

Achilles, C. N., et al. (2017), Mineralogy of active eolian sediment from the Namib Dune, Gale crater, Mars, J. Geophys. Res. Planets, 122, doi:10.1002/2017JE005262.

Allen, J. R. L. (1970), The avalanching of granular solids on dune and similar slopes, J. Geol., 78, 326–351.

Anderson, R. B., and J. F.Bell III (2010), Geologic mapping and characterization of Gale crater and implications for its potential as a Mars Science Laboratory landing site, Mars, 5, 76–128.

Atwood‐Stone, C., and A. S.McEwen (2013), Avalanche slope angles in low‐gravity environments from active Martian sand dunes, Geophys. Res. Lett., 40, 2929–2934, doi:10.1002/grl.50586.

Bagnold, R. A. (1941), The Physics of Wind Blown Sand and Desert Dunes, vol. 265(10), 244 pp., Methuen & Co., London.

Baitis, E., G.Kocurek, V.Smith, D.Mohrig, R. C.Ewing, and A. P.Peyret (2014), Definition and origin of the dune‐field pattern at White Sands, New Mexico, Aeolian Res., 15, 269–287.

Balme, M., D. C.Berman, M. C.Bourke, and J. R.Zimbelman (2008), Transverse aeolian ridges (TARs) on Mars, Geomorphology, 101(4), 703–720.

Banham, S. G., S.Gupta, D. M.Rubin, J. A.Watkins, D. Y.Sumner, J. P.Grotzinger, K. W.Lewis, K. S.Edgett, L. A.Edgar, and K. M.Stack (2016), Reconstruction of an ancient eolian Dune Field at Gale crater, Mars: Sedimentary analysis of the Stimson formation, Lunar and Planet. Sci. Conf., vol. 47, p. 2346.

Bennett, S. J., and J. L.Best (1995), Mean flow and turbulence structure over fixed, two‐dimensional dunes: Implications for sediment transport and bedform stability, Sedimentology, 42(3), 491–513.

Bourke, M. C., and H. A.Viles (2016), Valley floor aeolianite in an equatorial pit crater on Mars, Geophys. Res. Lett., 43, 12,356–12,362, doi:10.1002/2016GL071467.

Breed, C. S., and T.Grow (1979), Morphology and distribution of dunes in sand seas observed by remote sensing, in A Study of Global Sand Seas, vol. 1052, pp. 253–302, U.S. Gov. Print. Office, Washington, D. C.

Bridges, N. T., P. E.Geissler, A. S.McEwen, B. J.Thomson, F. C.Chuang, K. E.Herkenhoff, L. P.Keszthelyi, and S.Martínez‐Alonso (2007), Windy Mars: A dynamic planet as seen by the HiRISE camera, Geophys. Res. Lett., 34, L23205, doi:10.1029/2007GL031445.

Bridges, N. T., et al. (2012), Planet‐wide sand motion on Mars, Geology, 40(1), 31–34.

Bridges, N. T., et al. (2017), Martian aeolian activity at the Bagnold Dunes, Gale crater: The view from the surface and orbit, J. Geophys. Res. Planets, 122, doi:10.1002/2017JE005263.

Brookfield, M. E. (1977), The origin of bounding surfaces in ancient aeolian sandstones, Sedimentology, 24(3), 303–332.

101 references, page 1 of 7
Abstract
Key Points Impact ripples, grainfall, and grainflows occur on Martian dunes and are similar to terrestrial counterpartsUnique, meter‐scale large ripples are found on Martian dunes and would distinguish the Martian and terrestrial eolian rock recordsThe angle of repose on Martian dunes and large ripples is found to be around 29°, which is similar to that found on Earth
Subjects
free text keywords: Investigations of the Bagnold Dune Field, Gale crater, Global Change, Geomorphology and Weathering, Hydrology, Geomorphology: General, Sediment Transport, Oceanography: Physical, Planetary Sciences: Solid Surface Planets, Erosion and Weathering, Planetary Sciences: Solar System Objects, Mars, Research Article, Research Articles, aeolian, sand dunes, ripples, Gale crater, bed forms, Bagnold Dune Field, Science & Technology, Physical Sciences, Geochemistry & Geophysics, DIRECTIONALLY VARYING FLOWS, AEOLIAN DUNE, LONGITUDINAL DUNES, NUMERICAL SIMULATIONS, FIELD PATTERN, WIND RIPPLES, WHITE SANDS, NEW-MEXICO, AIR-FLOW
101 references, page 1 of 7

Achilles, C. N., et al. (2017), Mineralogy of active eolian sediment from the Namib Dune, Gale crater, Mars, J. Geophys. Res. Planets, 122, doi:10.1002/2017JE005262.

Allen, J. R. L. (1970), The avalanching of granular solids on dune and similar slopes, J. Geol., 78, 326–351.

Anderson, R. B., and J. F.Bell III (2010), Geologic mapping and characterization of Gale crater and implications for its potential as a Mars Science Laboratory landing site, Mars, 5, 76–128.

Atwood‐Stone, C., and A. S.McEwen (2013), Avalanche slope angles in low‐gravity environments from active Martian sand dunes, Geophys. Res. Lett., 40, 2929–2934, doi:10.1002/grl.50586.

Bagnold, R. A. (1941), The Physics of Wind Blown Sand and Desert Dunes, vol. 265(10), 244 pp., Methuen & Co., London.

Baitis, E., G.Kocurek, V.Smith, D.Mohrig, R. C.Ewing, and A. P.Peyret (2014), Definition and origin of the dune‐field pattern at White Sands, New Mexico, Aeolian Res., 15, 269–287.

Balme, M., D. C.Berman, M. C.Bourke, and J. R.Zimbelman (2008), Transverse aeolian ridges (TARs) on Mars, Geomorphology, 101(4), 703–720.

Banham, S. G., S.Gupta, D. M.Rubin, J. A.Watkins, D. Y.Sumner, J. P.Grotzinger, K. W.Lewis, K. S.Edgett, L. A.Edgar, and K. M.Stack (2016), Reconstruction of an ancient eolian Dune Field at Gale crater, Mars: Sedimentary analysis of the Stimson formation, Lunar and Planet. Sci. Conf., vol. 47, p. 2346.

Bennett, S. J., and J. L.Best (1995), Mean flow and turbulence structure over fixed, two‐dimensional dunes: Implications for sediment transport and bedform stability, Sedimentology, 42(3), 491–513.

Bourke, M. C., and H. A.Viles (2016), Valley floor aeolianite in an equatorial pit crater on Mars, Geophys. Res. Lett., 43, 12,356–12,362, doi:10.1002/2016GL071467.

Breed, C. S., and T.Grow (1979), Morphology and distribution of dunes in sand seas observed by remote sensing, in A Study of Global Sand Seas, vol. 1052, pp. 253–302, U.S. Gov. Print. Office, Washington, D. C.

Bridges, N. T., P. E.Geissler, A. S.McEwen, B. J.Thomson, F. C.Chuang, K. E.Herkenhoff, L. P.Keszthelyi, and S.Martínez‐Alonso (2007), Windy Mars: A dynamic planet as seen by the HiRISE camera, Geophys. Res. Lett., 34, L23205, doi:10.1029/2007GL031445.

Bridges, N. T., et al. (2012), Planet‐wide sand motion on Mars, Geology, 40(1), 31–34.

Bridges, N. T., et al. (2017), Martian aeolian activity at the Bagnold Dunes, Gale crater: The view from the surface and orbit, J. Geophys. Res. Planets, 122, doi:10.1002/2017JE005263.

Brookfield, M. E. (1977), The origin of bounding surfaces in ancient aeolian sandstones, Sedimentology, 24(3), 303–332.

101 references, page 1 of 7
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue