publication . Preprint . 2007

Universal relaxation times for electron and nucleon gases

Pelc, M.; Marciak-Kozlowska, J.; Kozlowski, M.;
Open Access English
  • Published: 11 Nov 2007
In this paper we calculate the universal relaxation times for electron and nucleon fermionic gases. We argue that the universal relaxation time tau(i) is equal tau(i)=h/m square v(i) where v(i)=alpha(i)c and alpha(1)=0.15 for nucleon gas and alpha(2)=1/137 for electron gas, c=light velocity. With the universal relaxation time we formulate the thermal Proca equation for fermionic gases. Key words: universal relaxation time, thermal universal Proca equation.
arXiv: Condensed Matter::Quantum Gases
free text keywords: Physics - General Physics
Related Organizations
Download from

Kozlowski M., Marciak -Kozlowska J., Thermal Processes Using Attosecond Laser Pulses, Springer 2006.

Pelc M., Marciak - Kozlowska J., Kozlowski M., Proca thermal equation for attosecond laser pulse interaction with matter, Lasers in Engineering 15 (2005), 347. [OpenAIRE]

Bearden I. G. et al., Collective Expansion in High Energy Heavy Ion Collisions, Phys. Rev. Lett. 78 (1997), 2080.

Ledingham K. W. D., Norreys P. A., Nuclear physics merely using a light source, Contemporary Physics 40 (1999), 367. [OpenAIRE]

Hood S., Universal bound on dynamical relaxation times and black - hole quasinormal ringing, Phys. Rev. D75 (2007), 064013.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue