Gaussian approximation for finitely extensible bead-spring chains with hydrodynamic interaction

Preprint English OPEN
Prabhakar, R.; Prakash, J. Ravi;
(2006)

The Gaussian Approximation, proposed originally by Ottinger [J. Chem. Phys., 90 (1) : 463-473, 1989] to account for the influence of fluctuations in hydrodynamic interactions in Rouse chains, is adapted here to derive a new mean-field approximation for the FENE spring f... View more
  • References (46)
    46 references, page 1 of 5

    [1] B. H. Zimm. Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys., 24(2):269-278, 1956. URL http://dx.doi.org/10.1063/1.1742462.

    [2] H. C. O¨ ttinger. Generalized Zimm model for dilute polymer solutions under theta conditions. J. Chem. Phys., 86(6):3731-3749, 1987. URL http://dx.doi.org/10.1063/1.451975.

    [3] H. C. O¨ ttinger. Gaussian approximation for Rouse chains with hydrodynamic interaction. J. Chem. Phys., 90(1):463-473, 1989. URL http://dx.doi.org/10.1063/1.456496.

    [4] L. E. Wedgewood. A Gaussian closure of the second-moment equation for a Hookean dumbbell with hydrodynamic interaction. J. NonNewtonian Fluid Mech., 31(2):127-142, 1989. URL http://dx.doi.org/10.1016/0377-0257(89)80027-8.

    [5] W. Zylka. Gaussian approximation and Brownian dynamics simulations for Rouse chains with hydrodynamic interaction undergoing simple shear flow. J. Chem. Phys., 94(6):4628-4636, 1991. URL http://dx.doi.org/10.1063/1.460591.

    [6] A. Peterlin. Hydrodynamics of macromolecules in a velocity field with longitudinal gradient. J. Poly. Sci. B, Poly. Lett., 4B:287-291, 1966.

    [7] R. M. Jendrejack, J. J. de Pablo, and M. D. Graham. Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions. J. Chem. Phys., 116(17):7752-7759, 2002. URL http:/dx.doi.org/10.1063/1.1466831.

    [8] C.-C. Hsieh, L. Li, and R. G. Larson. Modeling hydrodynamic interaction in Brownian dynamics: Simulations of extensional flows of dilute solutions of DNA and polystyrene. J. NonNewtonian Fluid Mech., 113:147-191, 2003. URL http://dx.doi.org/10.1016/S0377-0257(03)00107-1.

    [9] R. Prabhakar, J. R. Prakash, and T. Sridhar. A successive fine-graining scheme for predicting the rheological properties of dilute polymer solutions. J. Rheol., 48(8):1251-1278, 2004. URL http:/dx.doi.org/10.1122/1.1807841.

    [10] P. Sunthar and J. R. Prakash. Parameter-free prediction of DNA conformations in elongational flow by Successive Fine Graining. Macromolecules, 38(2):617-640, 2005. URL http://dx.doi.org/10.1021/ma035941l.

  • Related Organizations (7)
  • Metrics
Share - Bookmark