A logic road from special relativity to general relativity

Preprint English OPEN
Andréka, Hajnal; Madarász, Judit X.; Németi, István; Székely, Gergely;
  • Related identifiers: doi: 10.1007/s11229-011-9914-8
  • Subject: General Relativity and Quantum Cosmology | Mathematical Physics | Mathematics - Logic
    arxiv: Computer Science::General Literature | Mathematics::Logic

We present a streamlined axiom system of special relativity in first-order logic. From this axiom system we "derive" an axiom system of general relativity in two natural steps. We will also see how the axioms of special relativity transform into those of general relativ... View more
  • References (25)
    25 references, page 1 of 3

    [1] Andr´eka, H., V. Goranko, Sz. Mikula´s, I. N´emeti, and I. Sain. Effective first order temporal logics. pp. 51-129. In L. Bolc and A. Szalas (eds.) Time and Logic, a computational approach UCL, London, 1995.

    [2] Andr´eka, H., J. X. Madar´asz, and I. N´emeti. On the logical structure of relativity theories. E-book, Alfr´ed R´enyi Institute of Mathematics, Budapest, 2002. With contributions from A. Andai, G. Sa´gi, I. Sain, and Cs. T˝oke. http://www.mathinst.hu/pub/algebraic-logic/olsort.html. 1312 pp.

    [3] Andr´eka H., J. X. Madar´asz, and I. N´emeti. Logic of space-time and relativity theory. In M. Aiello, I. Pratt-Hartmann, and J. van Benthem, (eds.) Handbook of spatial logics, pp. 607-711. Springer-Verlag, Dordrecht, 2007.

    [4] Andr´eka H., J. X. Madar´asz, and I. N´emeti. Logical axiomatizations of spacetime. Samples from the literature. In A. Pr´ekopa and E. Molna´r (eds.) NonEuclidean geometries, pp. 155-185. Springer-Verlag, New York, 2006.

    [5] Andr´eka, H., J. X. Madar´asz, I. N´emeti, P. N´emeti, and G. Sz´ekely. Vienna Circle and logical analysis of relativity theory. In F. Stadler (ed.) Wiener Kreis und Ungarn. Vero¨ffentlishungen des Instituts Wiener Kreis, Springer-Verlag, to appear.

    [6] Andr´eka, H., J. X. Madar´asz, I. N´emeti, and G. Sz´ekely. A logical investigation of inertial and accelerated observers in flat space-time. In F. G´ecseg, J. Csirik, and Gy. Tur´an (eds.) Kalm´ar Workshop on Logic and Computer Science, pp. 45-57, JATE University of Szeged, Szeged, 2003.

    [7] Andr´eka, H., J. X. Madar´asz, I. N´emeti, and G. Sz´ekely. Relativity Theory on Logical Grounds. Course Notes, Budapest 2010. http://www.mathinst.hu/pub/algebraic-logic/kurzus10/kurzus10.htm

    [8] Benda, T. A formal construction of the spacetime manifold. J. Phil. Logic, 37(5):441-478, 2008.

    [9] Chang, C. C., and H. J. Keisler. Model theory. North-Holland Publishing Co., Amsterdam, 1990.

    [10] d'Inverno, R. Introducing Einstein's relativity. Oxford University Press, New York, 1992.

  • Metrics
Share - Bookmark