publication . Preprint . Article . 2010

Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

Liu Yongan; Yang Sun; Yang Sun; Yang Sun; X. H. Zhou; Yong Yang; Hui-Zi Jin; Shuang Yu; Y. H. Zhang;
Open Access English
  • Published: 29 Jun 2010
We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a uniform hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER and NSTX (National Spherical Torus Experiment). Unmagnetized dense plasma jet injection is similar to compact toroid injection but with much higher plasma density and total mass, and consequently lower required injection velocity. Mass deposition of the jet into the background appears to be facilitated via magnetic reconnection along the jet's trailing edge. The penetration depth of the plasma jet ...
arXiv: Physics::Plasma PhysicsPhysics::Space PhysicsAstrophysics::High Energy Astrophysical Phenomena
free text keywords: Physics - Plasma Physics, Physics - Computational Physics, Physics - Fluid Dynamics, Nuclear and High Energy Physics, Condensed Matter Physics, Neutron number, Proton, Neutron, Yrast, Excited state, Isotope, Physics, Large deformation, SHELL model, Atomic physics, Magnetohydrodynamic drive, Penetration depth, Compact toroid, Plasma, Edge-localized mode, Tokamak, law.invention, law, Computational physics, Magnetic flux, Magnetic reconnection
23 references, page 1 of 2

[1] P. B. Parks. Phys. Rev. Lett., 61:1364, 1988.

[2] M. Shimada et al. Progress in the ITER Physics Basis Chapter 1: Overview and summary 2007 Nucl. Fusion 47, S1.

[3] A. V. Voronin, V. K. Gusev, Yu. V. Petrov, N. V. Sakharov, K. B. Abramova, E. M. Sklyarova, and S. Yu. Tolstyakov. Nucl. Fusion, 45:1039, 2005.

[4] W. Liu, S. C. Hsu, and H. Li. Nucl. Fusion, 49:095008, 2009.

[5] K. B. Abramova, A. V. Voronin, V. K. Gusev, E. E. Mukhin, Yu. V. Petrov, N. V. Sakharov, and F. V. Chernyshev. Plasma Phys. Rep., 31:721, 2005.

[6] R. Raman. Fusion Eng Des., 83:1368-1374, 2008.

[7] S. L. Milora, C. A. Foster, P. H. Edmunds, and G. L. Schmidt. Phys. Rev. Lett., 42, 1979.

[8] L. J. Perkins, S. K. Ho, and J. H. Hammer. Nucl. Fusion, 28:1365, 1988.

[9] A. V. Voronin and K. G. Hellblom. Plasma Phys. Control. Fus., 43:1583, 2001.

[10] F. D. Witherspoon, HyperV Technologies Corp., private communication (2010).

[11] M. Ono, S. M. Kaye, Y. K. M. Peng, G. Barnes, W. Blanchard, M. D. Carter, J. Chrzanowski, L. Dudek, R. Ewig, D. Gates, R. E. Hatcher, T. Jarboe, S. C. Jardin, D. Johnson, R. Kaita, M. kalish, C. E. Kessel, H. W. Kugel, R. Maingi, R. Majeski, J. Manickam, B. McCormack, J. Menard, D. Mueller, B. A. Nelson, B. E. Nelson, C. Neumeyer, G. Oliaro, F. Paoletti, R. Parsells, E. Perry, N. Pomphrey, S. Ramakrishnan, R. Raman, G. Rewoldt, J. Robinson, A. L. Roquemore, P. Ryan, S. Sabbagh, D. Swain, E. J. Synakowski, M. Viola, M. Williams, and J. R. Wilson. Nucl. Fusion, 40:557, 2000.

[12] P. T. Lang, B. Alper, R. Buttery, K. Gal, J. Hobirk, J. Neuhauser, and M. Stamp. Nucl. Fusion, 47:754, 2007.

[13] I. N. Bogatu, S. A. Galkin, and J. S. Kim. J. Fusion Energy, 27:6, 2008.

[14] W. A. Newcomb. Phys. Fluids B, 3:1818, 1991.

[15] Y. Suzuki, T.-H Watanabe, T. Sato, and T. Hayashi. Nucl. Fusion, 40:277, 2000.

23 references, page 1 of 2
Any information missing or wrong?Report an Issue