Regression Phalanxes

Preprint English OPEN
Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.;
(2017)
  • Subject: Statistics - Machine Learning

Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for ... View more
  • References (13)
    13 references, page 1 of 2

    Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2):185{193.

    Breiman, L. (2001). Random forests. Machine learning, 45(1):5{32.

    Burden, F. R. (1989). Molecular identi cation number for substructure searches. Journal of Chemical Information and Computer Sciences, 29(3):225{227.

    Carhart, R. E., Smith, D. H., and Venkataraghavan, R. (1985). Atom pairs as molecular features in structure-activity studies: de nition and applications. Journal of Chemical Information and Computer Sciences, 25(2):64{73.

    Esbensen, K., Midtgaard, T., and Schonkopf, S. (1996). Multivariate Analysis in Practice: A Training Package. Camo As.

    Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1):1.

    Hughes-Oliver, J. M., Brooks, A. D., Welch, W. J., Khaledi, M. G., Hawkins, D., Young, S. S., Patil, K., Howell, G. W., Ng, R. T., and Chu, M. T. (2010). Chemmodlab: a web-based cheminformatics modeling laboratory. In silico biology, 11(1-2):61{81.

    Lemberge, P., De Raedt, I., and Janssens, K. H. (2000). Quantitative analysis of 16- 17th century archaeological glass vessels using pls regression of epxma and mu-xrf data. Journal of chemometrics, 14(5):751{764.

    Liu, K., Feng, J., and Young, S. S. (2005). Powermv: a software environment for molecular viewing, descriptor generation, data analysis and hit evaluation. Journal of chemical information and modeling, 45(2):515{522.

    Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B. J., Ricciuto, D., and Thornton, P. (2014). Dimensionality reduction for complex models via bayesian compressive sensing. International Journal for Uncertainty Quanti cation, 4(1).

  • Metrics
    No metrics available
Share - Bookmark