publication . Article . Preprint . 2018

realizing a circuit analog of an optomechanical system with longitudinally coupled superconducting resonators

Eichler, C.; Petta, J. R.;
Open Access
  • Published: 30 May 2018 Journal: Physical Review Letters, volume 120 (issn: 0031-9007, eissn: 1079-7114, Copyright policy)
  • Publisher: American Physical Society (APS)
Abstract
We realize a superconducting circuit analog of the generic cavity-optomechanical Hamiltonian by longitudinally coupling two superconducting resonators, which are an order of magnitude different in frequency. We achieve longitudinal coupling by embedding a superconducting quantum interference device (SQUID) into a high frequency resonator, making its resonance frequency depend on the zero point current fluctuations of a nearby low frequency LC-resonator. By employing sideband drive fields we enhance the intrinsic coupling strength of about 15 kHz up to 280 kHz by controlling the amplitude of the drive field. Our results pave the way towards the exploration of opt...
Subjects
arXiv: Physics::OpticsCondensed Matter::Superconductivity
free text keywords: General Physics and Astronomy, Radio frequency, Resonance, Physics, SQUID, law.invention, law, Quantum optics, Resonator, Sideband, Condensed matter physics, Photon, Optoelectronics, business.industry, business, Coupling, Quantum Physics, Condensed Matter - Mesoscale and Nanoscale Physics
Related Organizations
55 references, page 1 of 4

[1] M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley, A. D. O'Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland, and J. M. Martinis, Nature 461, 504 (2009).

[2] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O'Connell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland, Nature 459, 546 (2009).

[3] O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov Jr., Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, Science 327, 840 (2010).

[4] R. Vijay, D. H. Slichter, and I. Siddiqi, Phys. Rev. Lett. 106, 110502 (2011).

[5] M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, Nat. Phys. 4, 929 (2008).

[6] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio, D. E. Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret, Nature 465, 64 (2010).

[7] M. Hatridge, R. Vijay, D. H. Slichter, J. Clarke, and I. Siddiqi, Phys. Rev. B 83, 134501 (2011).

[8] C. Eichler and A. Wallraff, EPJ Quantum Technology 1, 2 (2014).

[9] C. Macklin, K. O'Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi, Science 350, 307 (2015).

[10] M. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013).

[11] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature 460, 240 (2009).

[12] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature 482, 382 (2012).

[13] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. OM´ alley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Nature 508, 500 (2014).

[14] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Nature 536, 441 (2016).

[15] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dre´au, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, Phys. Rev. Lett. 105, 140502 (2010).

55 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Preprint . 2018

realizing a circuit analog of an optomechanical system with longitudinally coupled superconducting resonators

Eichler, C.; Petta, J. R.;